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Abstract: The diagnosis and assessment of brain damage is currently based on the clinical examination and the modern 

neuro-imaging techniques. Electrophysiology, haemodynamic monitoring and invasive neuromonitoring constitute addi-

tional tools for monitoring of the brain function and clinical course of the patient. However, despite the substantial pro-

gress, clinical and neuro-monitoring methods are quite often not sufficient to evaluate and quantify the severity of the ini-

tial and secondary destructive processes and hence they cannot guide efficient therapeutic measures and prognosticate ef-

fectively the outcome. During the last decades, researchers and clinicians have focused on specific markers of brain cell 

damage to improve the diagnosis and monitoring of neurological insults. Lactate dehydrogenase, creatine kinase, neuron 

specific enolase, have been proposed as potential markers of brain injury. More recently, other glial markers such as the 

Myelin Basic Protein, the glial fibrillary acidic protein and the S-100B protein have been measured in blood and used as 

surrogate biochemical markers for brain injury. 

This review summarizes published findings on the above brain specific serum biochemical markers with emphasis on 

those with clinical utility.  
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INTRODUCTION 

 Neurological events like brain trauma, haemorrhage, and 
ischaemic stroke result in primary damage of neurons and 
glia that in combination with secondary insults due to hy-
poxia, hypotension, seizures, sepsis or central fever can have 
an adverse effect on brain integrity and neurological out-
come.  

 Clinical assessment of brain function [neurological ex-
amination, Glasgow Coma Scale for level of consciousness 
(GCS), pupillary reactivity, Glasgow Outcome Scale for 
outcome (GOS)], and neuro-imaging techniques [Computed 
Tomography (CT), Magnetic Resonance Imaging (MRI), 
Transcranial Doppler (TCD), Positron Emission Tomogra-
phy (PET)] constitute the common ways for diagnosis and 
assessment of brain damage. Moreover, electrophysiology 
[evoked potentials: Brain Stem (BAEP), Somato-Sensitive 
(SSEP) and Motor (MEP), electroencephalography (EEG)], 
haemodynamic monitoring [(arterial blood pressure, Jugular 
vein Oxygen Saturation (SjvO2)], standard invasive neuro-
monitoring [intracranial pressure (ICP), cerebral perfusion 
pressure (CPP)] and advanced techniques of invasive neuro-
monitoring [brain tissue oxygenation (PtO2) and microdialy-
sis], constitute additional tools for monitoring of the brain 
function and clinical course of the patient. 
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 Despite the substantial progress in cerebral neuro-moni-
toring, clinical and neuro-monitoring methods are quite often 
not sufficient to evaluate and quantify the severity of the 
initial injury as well as the ongoing secondary destructive 
processes and hence they cannot guide efficient therapeutic 
measures and prognosticate effectively the final outcome. 
The problem becomes even more prominent with intensive 
care comatose patients with facial trauma, pre-existing pupil-
lary abnormalities, extra-cranial injuries and incomplete 
clinical data. Moreover some clinical symptoms such as my-
driasis and abnormal motor response develop late and are 
often signs of major and irreversible brain damage. It is well 
known that a prompt diagnosis of a neurological deteriora-
tion or complication remains a major challenge in clinical 
practice.  

 On the other hand, serum biochemical markers offer 
valuable information regarding the diagnosis of disease of 
many organs such as troponin for myocardial infarction, PSA 
for prostate cancer, creatinine for renal failure, CEA for co-
lon cancer, amylase for pancreatitis, CA-125 for ovarian 
cancer. These markers are relatively specific for the tissues 
or the function of the organs and provide useful information 
for the diagnosis, the severity and the course of the disease, 
the effect of treatment and the outcome of the patient. Other 
serum biochemical markers such as CRP are not specific for 
tissues or organs; however they offer information regarding 
the body reaction in pathological conditions like infection 
and trauma. 

 According to Bakay and Ward the ideal serum marker of 
brain injury should have high specificity for brain, high sen-
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sitivity for brain injury, no age or sex variability, and rapid 
appearance in serum, as well as should ensure a predictable 
relationship between the serum concentration and the tissue 
injury, show clinical relevance and reliable assays for meas-
urement should be available [1].  

 Since the nineteen seventies many serum biochemical 
markers have been proposed as potential brain injury indica-
tors: 

SERUM BIOCHEMICAL MARKERS FOR BRAIN IN-

JURY: CHARACTERISTICS AND RELIABILITY 

Creatine Kinase (CK) is one of the early serum enzyme 
markers measured in patients with brain injury. It is an en-
zyme catalyzing the high potential transfer of a phosphotyl 
group from creatine phosphate (the tissue reservoir of high-
potential phosphoryl groups) to ADP to form ATP (fuel for 
muscles, heart and brain). It is a 40-53 kDa dimer of two 
kinds of subunits: M & B. Consequently CK has three isoen-
zymes: The CK-MM (muscle type), the CK-MB (heart type) 
and the CK-BB (brain type) [2, 3]. The brain type is located 
in the astrocytes, however is also presented in organs such as 
the large intestine, the stomach, the urinary bladder and the 
prostate gland. According to Table 1 the concentration of the 

enzyme in these organs is one third to one fourth of that in 
brain [4, 5]. 

 CK-BB upper normal limit in blood is 3.0 g/L. It is re-
leased after brain tissue injury and the serum levels are 
higher during the first hours and then fall to normal levels.  

 CK-MB has been used as serum marker for the isheamic 
heart disease. Its blood levels increases 4-8 hs following an 
isheamic attack and normalize 3-4 days later on. 

 number of studies reported increased serum CK-BB 
levels after head injury [6, 7]. Bakay and Ward studying pa-
tients with head injury observed a weak correlation between 
CK-BB and injury severity and they mention that this marker 
has inadequate sensitivity and specificity [1]. Further studies 
from Skogseid et al. and Levitt et al., revealed the deficiency 
of CK-BB as a predictor of intracranial injury revealed by 
CT scan [8, 9]. 

Lactate Dehydrogenase (LDH) is another early serum 
biochemical marker for brain injury. It is a cytoplasmic en-
zyme participating in the glycolysis pathway and transform-
ing pyruvate to lactate, when amount of oxygen is limiting. It 
is a 140 kDa tetramer of two kinds of 35 kDa subunits: the H 
type (predominates in the brain and the heart) and the ho-

Table 1. Relative Concentrations of CK-BB, NSE and S-100B Protein in Human Tissues (Markers’ Brain Concentration: 100; all 

other Values in Relation to Brain Concentration). Both NSE and S-100B Present with High Brain Tissue Specificity. Es-

pecially, in S-100B Case the Highest Brain Injury Specificity is Combined with Increased Clinical Utility [51-84] 

 CK-  NSE S-100B 

Brain 100 100 100 

Large intestine 49,1 1,9 2,5 

Stomach 35,3 2,6 0,7 

Urinary bladder 35,3 2,6 0,7 

Prostate gland 31,9 2 0,1 

Small intestine 19,2 1,9 2,1 

Uterus 22,1 1,1 0,2 

Vessels 12,1 1,4 0,2 

Thyroid gland 11,3 2,6 0,2 

Gallbladder 5,4 0,9 1,7 

Kidney 5,7 0,1 0,3 

Lung 3,5 1,5 0,2 

Mammary gland 0,5 0,1 1,8 

Spleen 0,7 2,5 1,8 

Aorta 0,8 0,5 0,1 

Liver 0,3 0,2 0,1 

Skeletal muscles 0,3 0,2 0,7 

Heart 0,1 0,1 0,2 

CK-BB: Creatine Kinase isoenzyme BB, NSE: Neuron Specific Enolase. 
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mologus M type (predominates in skeletal muscle and the 
liver). These subunits associate to form five types of tetram-
ers: H4, H3M, H2M2, H1M3, and M4 making five different 
isoenzymes (type 1-5). LDH 1 - 3 are found in high concen-
tration in the brain and the heart and LDH 4 and 5 are pre-
dominant in skeletal muscles and liver. The type 1 isoen-
zyme (H4) has higher affinity for substrates and is allosteri-
cally inhibited by high levels of pyruvate. Consequently, 
type 1 isoenzyme (H4) is designated to oxidize lactate to py-
ruvate, which is then utilized as a fuel by the brain and the 
heart. In contrast, type 5 isoenzyme (M4) is optimized to 
operate the reverse direction, to convert pyruvate to lactate to 
allow glycolysis to proceed under anaerobic conditions par-
ticularly in muscles. The others isoenzymes have intermedi-
ate properties depending on the ratio of the two kinds of 
chains [2,3]. 

 LDH 1 has been extensively used as serum marker for the 
heart isheamic disease. Its blood levels increases 24-48 hs 
following an isheamic heart attack with maximum levels 
during the 3

rd
 and 4

th
 day. The normal serum value for LDH 

type 1 is less than 280 U/ml. LDH 2 & 3 blood levels in-
crease in pulmonary embolus.  

 Bakay and Ward investigated the role of LDH 1 as serum 
brain marker in patients with severe and moderate head in-
jury found no correlation between LDH 1 levels and out-
come. They concluded that LDH has limited sensitivity and 
specificity for brain injury [1]. 

Glial Fibrillary Acidic Protein (GFAP) is the principal 
intermediate filament in glial cells of the CNS and represents 
a significant part of the cytoskeleton of the mature astrocytes 
[10]. It is a monomeric molecule which has been recently 
measured in blood and used as surrogate biochemical marker 
for brain injury. Its normal serum concentration is less than 
0.04 g/L and its molecular mass is 40-53 kDa [11]. 

 Missler et al., found increased serum GFAP levels after 
severe head injury. In addition Pelinka et al., confirmed that 
GFAP is released after traumatic brain injury (TBI), is re-
lated to brain injury severity and outcome after TBI, and is 
not released after multiple trauma without brain injury [11, 
12]. Nylén et al., agreed that serum GFAP is increased dur-
ing the first days after a severe TBI and is related to clinical 
outcome [13]. Moreover, Herrmann et al., showed that 
GFAP could be used as a tool of clinical stroke management 
and Nylen et al., showed that GFAP provides information 
about brain injury severity and outcome after subarachnoid 
haemorrhage [14, 15]. All the above studies confirm that 
serum GFAP could be a promising biochemical marker for 
brain injury detection and prognosis. 

Myelin Basic Protein ( BP) is found in oligodentro-
glial cells and appears to be bound to the cellular membrane 
of central myelin mainly. It is well known that oligodendro-
cytes are responsible for the formation of the myelin sheaths 
in the Central Nervous System. Their plasma membrane be-
comes wrapped around the neural axon. Its molecular mass 
is 18.5 kDa [2]. 

 MBP can be released into serum after brain injury or de-
myelinating disease. In control cases the myelin basic protein  

serum levels was found to range from undetectable to a 
maximum of 17 g/L, with mean value of 7.2 g/L. Thomas 
et al., found higher serum MBP levels in patients after severe 
head injury with poor outcome than in those with favorable 
outcome [16, 17]. Similar findings were reported by Yama-
zaki et al. [18]. It is obvious that further studies are required 
to clarify the reliability of serum MBP as a serum marker for 
brain injury. 

Neuron Specific Enolase (NSE) is a member of a glyco-
lytic enzymes family (enolases). They are presented as di-
meric isoenzymes made of three subunits ,  and  chains. 
The  and  isoforms are referred as NSE and is found in 
neurons, peripheral neuroendocrine tissue and tumours with 
amine precursor uptake and degradation function. It is lo-
cated in the cytoplasm of neurons and is involved in chloride 
levels balance during the onset of neural activity [19]. Table 
1 confirms the high brain specificity of the NSE.  

 The molecular mass of NSE is 78 kDa with normal se-
rum concentration less than 12.5 g/L and biological half-
time more than 20 hours. NSE has been used as a marker for 
tumours, such as small cell lung cancer, neuroblastoma & 
myeloma (amino precursor uptake & degradation system). 

 Many studies observed increased serum levels of NSE 
after head injury, although others failed to detect differences 
between patients and controls [20, 21]. 

 Both McKeating et al. and Woertgen et al., reported sec-
ondary serum NSE increases particularly in patients with 
brain injury and unfavorable outcome [22, 23]. However, the 
aforementioned studies found conflicted results as far as the 
correlation between the NSE levels and the GCS scores con-
cerns, the correlation between the NSE levels the admission 
CT scan findings concerns and the correlation between se-
rum NSE levels and the clinical outcome concerns. In addi-
tion no relation found between NSE and ICP [23]. Further-
more, Missler et al. showed that NSE failed to predict accu-
rately the infarct volume and the long-term neurological out-
come in patients with acute ischemic stroke [24]. Conse-
quently, NSE use in clinical practice seems to be quite 
doubtful. 

S-100B protein constitutes a big family of at least 20 
proteins of low molecular weight (9-13 kDa) with calcium 
binding ability that have been identified sharing various de-
grees of amino acid homology (25-65%) and being mainly 
characterized by two different Ca

2+
 binding domains (helix-

loop-helix) uniformly described as EF-hands [25].  

 In 1965, Moore identified and named S-100 due to its 
solubility in a 100% saturated ammonium sulphate solution. 
It was purified from bovine brain and defined as brain spe-
cific [26]. Later S-100 was shown to constitute a homo or 
hetero dimer of two distinct but related proteins: S-100A1 
and S-100B with a molecular weight of approximately 21 
kDa and with four Ca

2+
 binding sites [27, 28]. It also binds 

copper at 4 binding sites and Zn2+ at 6-8 binding sites and 
such binding influences the Ca

2+ 
- binding capacity of the 

protein [29].  

 In 1995, a new nomenclature was introduced for S-100 
proteins, after the identification of the chromosomal localiza-
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tion of 9 members of the S-100 family (S-100A1 – S-100A9) 
on the long arm of the human chromosome 1 (1q21). Ac-
cording to this, the protein previously called S-100 alpha (S-
100a) is now named S-100 A1 (S-100A1). The same nomen-
clature was also applied for S-100 proteins located on differ-
ent chromosomes: S-100B (formerly S-100beta), on chromo-
some 21 (located at a distance of 100-140 kb from the chro-
mosome terminus) and S-100P on chromosome 4 [30-32]. 
Further members of the S-100 family (S-100A10 – S-
100A14) were recognized later [33-35]. Within cells, S-100 
it is found as homo-dimers (S-100B / S-100B) or hetero-
dimers (S-100A1 / S-100B) of two different subunits (A1 
and B) [29]. 

 Types S-100AB and S-100BB are described as S-100B 
protein and are shown to be highly specific for nervous tissue 
(Table 1). It is most abundant in the cytosol of glial cells of 
the central and peripheral nervous system (astrocytes and 
Schwann cells) and is also expressed in melanocytes, adipo-
cytes and chondrocytes, although in very low concentrations 
[36-38 & Table 1].  

 Its short biologic half-life makes measurements crucial in 
the emergency and intensive care settings [39, 40]. Wies-
mann et al. showed that serum S-100 has no age or sex vari-
ability [41]. S-100B serum concentrations are not influenced 
by blood alcohol or acute alcohol intoxication [42-44]. It can 
be measured in arterial and venous serum, is not affected by 
hemolysis and remains stable for several hours, without the 
need for immediate analysis. It is metabolized and excreted 
from the kidneys [45, 46].  

 S-100B could be measured with various techniques [47]. 
Values above 0.5 g/L are considered “pathological” and 
0.15 – 0.5 g/L “borderline” according previous studies and 
the recommendations of the commercial representative [48]. 
The multiple intracellular and extracellular regulatory activi-
ties of the multi-genic S-100 protein family have been exten-
sively described in the literature [49, 50].  

 High serum S-100B values were found to be strongly 
correlated with the severity of the primary severe brain 
trauma, the Glasgow Coma Scale score, the patients’ out-
come, the neuroradiological findings (CT) and the ICP in-
crease according to many studies [22, 51-63]. Interestingly, 
Dimopoulou et al. mentioned the high predictive value of 
initial S-100B serum levels in trauma – induced brain death 
[64]. Serum S-100B protein was also found to be a sensitive 
biochemical marker of the brain tissue after mild head 
trauma. Initial increased value is followed by a rapid decline, 
as expected by the S-100B half-life [65-69].  

 Moreover, S-100B protein has been found to be elevated 
after ischaemic stroke. The amount of S-100B released over 
time is significantly correlated to the infraction volume [14, 
24, 70-73]. In addition, serum S-100B protein might be a 
good prognostic marker for cerebral injury in term newborn 
infants with hypoxic ischaemic encephalopathy and early 
detection of intraventricular haemorrhage. It may also repre-
sent an index of cerebral cell damage in the perinatal period 
[74-79]. Moreover, serum S-100B was found to be an indica-
tor of the haemorrhage severity (WFNS scale, CT) as well as 

a prognosticator of outcome in patients with subarachnoid 

haemorrhage [80-82]. 

 Finally, serum S-100B measurements were found to be 
predictor for postoperative deterioration in patients undergo-
ing meningioma resection and a useful prognostic variable in 

patients with cerebral gliomas [83, 84]. 

 Despite all these, the question of extracranial effect on S-
100B release has been raised. However, extra-cranial trauma 
seems to have a minimal contribution to the measured serum 
S-100B after severe traumatic head injury [85-88]. A more 
critical analysis of its role has been attempted by Kleindienst 

and Ross Bullock [89]. 

Brain and Heart type Fatty Acid-Binding Proteins, 

(B-FABP and H-FABP) are small 15kDa cytoplasmic, 
nonenzymatic proteins involved in the intracellular buffering 
and transport of long-chain fatty acids. B-FABP was first 
identified in the brains of rodents and showed diverse tissue 
production during development. In adult-stage mice, B-
FABP is produced in very low concentrations and is detected 
only in glial cells of the white matter. In contrast, H-FABP is 
detected in the neurons of the gray matter in mice and rats 
and constitutes 0.01% of total brain cytosolic protein [90]. 

 FABPs are released rapidly from damaged brain cells 
into the circulation and are cleared from the circulation by 
the kidney with a plasma half-life of 20 min. In a study with 
130 patients with mild traumatic brain injury both markers 
were found to be elevated in more cases than when S-100B 
and NSE were used, suggesting higher sensitivity for detec-
tion of brain injury [90]. 

Tau proteins are microtubule-associated proteins that 
are abundant in neurons in the central nervous system 
compared to non-neuronal cells. They have a molecular 
weight of approximately 62 kDa and interact with tubulin to 
stabilize microtubules and promote tubulin assembly into 
microtu-bules. They are active primarily in the distal 
portions of axons where it provides microtubule stabilization 
but also flexibility as needed. Bulut et al. investigating serum 
tau levels in patients with mild TBI found that they were 
increased. They concluded that this biomarker may prove 
helpful in identifying high-risk patients with mild TBI [91]. 

 In an attempt to compare the clinical significance of the 
aforementioned brain markers Vos et al. showed that serum 
S-100B level >1.13 microg/L was the strongest predictor of 
death, in comparison with NSE and GFAP [92]. Interest-
ingly, Pelinka et al. showed that GFAP was found to be 
more accurate for early mortality prediction (<12 hs) after 
TBI and S-100B was more accurate during the later stage 
when the focus is on monitoring for secondary neurological 
complications [93]. Berger at al reported that serum marker 
such as NSE, S100B and MBP are increased in the majority 
of children with acute TBI [94]. Nylén et al. hypothesised 
that the S-100BB dimer should be better related to outcome 
after severe traumatic brain injury than S-100A1B or the 
"sum S-100B concentration". They found that both S-
100A1B and S-100BB were related to outcome after severe 
traumatic brain injury and it seems unlikely that separate 



Serum Markers for Brain Injury Mini-Reviews in Medicinal Chemistry, 2009, Vol. 9, No. 2    231

analyses of the dimers are of any advantage compared with 
measuring S-100B alone [95]. 

SURROGATE INFLAMMATORY SERUM BIO-

CHEMICAL MARKERS 

 The 70 kilodalton heat shock proteins (Hsp70s) are an 
important part of the cell's machinery for transmembrane 
transport of proteins and help to protect cells from stress. In 
particular they are strongly upregulated by thermal or 
oxidative stress. da Rocha et al. in their recent study con-
cluded that increased serum Hsp70 levels may constitute an 
early predictor of unfavorable outcome in patients with se-
vere TBI [96]. 

RANTES is an acronym for Regulated on Activation, 

Normal T Expressed and Secreted. It is also known as 
CCL5. It is an 8kDa protein classified as a chemotactic 
cytokine or chemokine. It is chemotactic for T cells, 
eosinophils, and basophils, and plays an active role in re-
cruiting leukocytes into inflammatory sites. With the help of 
other particular cytokines that are released by T cells, RAN-
TES also induces the proliferation and activation of certain 
natural-killer (NK) cells. Lumpkins et al., found that RAN-
TES was a significant early marker of severe TBI in criti-
cally injured trauma patients, consistent with animal models 
[97]. 

Tumor necrosis factor alpha (TNF-alpha), intercellu-

lar adhesion molecule-1 and matrix metalloproteinase

were found to contribute to the outcome of brain ischemic 
stroke. Sotgiu et al. showed a direct significant correlation of 
the above serum markers with brain infarct size and National 
Institutes of Health (NIH) scales at stroke onset and 3-month 
follow-up [98]. 

 We need to clarify that most of the aforementioned 
markers have been isolated and measured in other biological 
fluids such as cerebrospinal fluid, amniotic fluid, urine and 
human milk [99-100]. In addition, a variety of markers such 
as alpha-II-spectrin breakdown products, glutamate, taurine, 
free fatty acids, cytochrome c, heat shock protein 60, nitroty-
rosine etc have been isolated in the cerebrospinal fluid and 
found to be useful predictive markers of outcome in patients 
with brain injury. These markers with increased sensitivity 
may be applicable to serum testing in the near future [101-
107]. It’s obvious that serum offers several advantages over 
cerebrospinal fluid, including ease of accessibility and re-
duced risk to the patient. 

CONCLUSIONS 

 A variety of serum biochemical markers for brain dys-
function have been investigated and used, although interest 
in some of these such as CK-BB and LDH 1 has been short 
lived. On the other hand there are many promising results 
from clinical studies in particular as far as the GFAP, the 
MBP and the S-100  protein concern. It is obvious that the 
literature regarding the S-100  protein is quite more exten-
sive. On the other hand minimal literature is available for 
FABP, tau proteins, Hsp70s, RANTES, and other serum 
inflammatory factors and their role as serum markers of 
brain damage. The assessment of the primary injury and the 
detection of ongoing secondary damage during intensive care 

seem to be the most promising clinical applications. How-
ever, further clinical and experimental studies have to be 
performed in order to identify new more reliable serum brain 
biochemical markers, clarify their precise release mecha-
nisms from damaged cells (glial cells or neurons) through the 
brain blood barrier and validate their clinical utility.  
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